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= — In the first part we give a brief review of some theoretical problems that still hinder
o 15 the practical use of bistable optical devices in logic circuits. In the second part we
= study the influence of a time-dependent control parameter on the solution of
= O differential equations. We prove that even for small sweeping rates large delays can
E 9) be expected, resulting in the dynamical stabilization of unstable solutions. Examples

are given for dynamically induced optical bistability in a laser and dynamical
stabilization in a laser with saturable absorber.

INTRODUCTION

Optical bistability (o.b.) has been for many years a stable attractor for theoretical and
experimental physics (Bowden et al. (eds) 1981, 1984; Abraham & Smith 1982 ; Lugiato 1984).
It has now reached a development such that one begins to think seriously of using bistable
optical devices (‘biodes’) to construct all-optical logic circuits and hence all-optical computers.
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The topics covered by this Discussion Meeting illustrate in many respects the state of the art
in this domain. In the first part of this paper, we review some of the theoretical problems that
still hinder the practical realization of an all-optical computer (for each topic we have selected
a few references; no attempt has been made to provide an exhaustive list of references). In the

second part we study more carefully one problem, related to the time-dependence of the input
field.

REVIEW

Bistability is a property that is often found in Nature as soon as the phenomena involve a

nonlinear mechanism. Electronic circuits, chemical reactions, hydrodynamics, biological
systems and quantum optics display quite a number of situations in which bistability has been
predicted or observed, or both. In all-optical arrangements, o.b. can be achieved by using either
active or passive systems. The passive system most widely studied (Miller et al. 1979; Gibbs
et al. 1979) is a Fabry—Perot resonator pumped by a coherent beam; inside the cavity a
semiconductor provides the necessary nonlinearity. O.b. can also be realized in active systems
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in which the inversion of a population is created by some incoherent mechanism. In fact the
earliest proposal to create a biode is due to Lasher (Lasher 1964), who suggested coupling two
semiconductor lasers in a single cavity to make a laser with saturable absorber. In such a system
one part of the device is acting as a normal laser whereas the other part provides the nonlinear
mechanism. This laser with a saturable absorber displays o.b. and passive @-switching (Harder
et al. 1982).
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O.b. refers to a situation where two stable states coexist, implying a hysteresis effect. Each
of these two states can be steady or periodic. Although chaotic attractors have also been found
and are very important for fundamental research, they are of little interest for the topics of
this Discussion Meeting. One way to achieve o.b. is to have a resonator whose length is a
function of the input intensity. This can be achieved, in passive systems, by allowing an intensity
dependence of either the physical length or the optical length of the resonator. In the first case,
one uses the pressure of the input radiation to modify the position of a suspended mirror (Dorsel
et al. 1983), the cavity being empty. In the second case the mirrors are fixed but the cavity
contains a medium whose complex susceptibility is significantly intensity-dependent (i.e. a
nonlinear medium). When the input field, the material medium and the cavity have nearly
equal frequencies, the dominant mechanism will be nonlinear absorption (i.e. absorptive o.b.
(see Bonifacio & Lugiato 1976; Szdke ¢t al. 1969; Weyer ¢t al. 1981)). When there are large
detunings we can still observe o.b. (in this case dispersive o0.b.) involving nonlinear refraction
coupled to linear absorption (Gibbs et al. 1976; Marburger & Felber 1978). The physics of
absorptive and dispersive o.b. are quite different and therefore lead to different experimental
constraints and optimization schemes. Nevertheless these schemes show a number of problems
that need to be resolved if we wish to build an all-optical computer. Some of these problems
have been carefully analysed by Fork (Fork 1982). Let us consider a thin sample of nonlinear
material with a large section. A number of beams at constant intensity are aimed at the sample
and at each entry point a probe beam or pulse is added to obtain a logic operation by means
of o.b. in the bulk of the sample (Smith 1984). The obvious main constraints to be imposed
are that each pixel (in this case the volume used by the beam within the sample) should be
stable before and after the switching and should be independent of its neighbours. The following
factors, to be discussed at this meeting, affect the stablity of and the cross-talk between pixels.

(1) Transverse effects. A real input beam has a finite diameter and a transverse intensity profile.
This affects both steady-state and dynamic responses of a biode. At steady state the width of
the hysteresis domain is generally reduced (Drummond 1981) and can even vanish, owing to
transverse effects. Moreover the domain for stable steady states is usually reduced by transverse
effects (Moloney et al. 1982). More important is the dynamics of the switching process, which
is deeply affected because not all parts of the beam will switch simultaneously (Rosanov &
Semenov 1981). The resulting increased gradient of intensity may enhance the self-focusing
or defocusing in the beam. Transverse effects will be discussed by Lugiato & Narducci at this
meeting (see also Firth & Wright 1982).

(i1) Diffusion. Another limitation to dense packing of pixels is diffusion cross-talk. It is
characterized by the recombination time of the free carriers, to which the nonlinear refraction
index is directly proportional. If N is the density of carriers, the recombination time is
proportional to N% depending on the dominant mechanism through which the carriers
recombine, e.g. the direct trapping of carriers yields a = 1, the Auger process yields a = 3 (direct
three-body interaction) and radiative recombination gives ¢ = 2. The avoidance of diffusion
cross-talk requires a good understanding of the microscopic mechanism on which o.b. is based.
This question is discussed in details by many authors in this meeting.

(iii) Diffraction. Another source of cross-talk is diffraction. It is intimately connected with
transverse effects and competes with diffusion against dense packing of pixels. It is already
better understood than diffusion because it does not involve a refined understanding of the
light-matter interaction and can therefore be treated at a macroscopic level. In a nonlinear
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medium it will induce self-focusing or defocusing, both effects being potentially disastrous.
The relative weight of diffraction and diffusion is analysed by Firth and his colleagues at this
meeting.

(iv) Nowse. A pixel is created by the presence of a holding beam with an intensity located
in the bistable domain. This domain may be fairly small, or we may wish to have a holding
intensity near the switch-up point, or both. In both cases the stability of the biode will be
affected by unavoidable noise in the holding beam. Here too a knowledge of the noise tolerance
is required to realize a reliable biode (Schmidt ef al. 1983 ; Willis 1983 ; DelleDonne et al. 1981).
Noise problems are considered by Arecchi at this meeting.

(v) Dynamics. There are relatively few results on the dynamical properties of biodes because
their discussion requires a solution of time-dependent equations. Most results are therefore
numerical or experimental. Among the dynamical properties let us mention:

the dependence of switch-up and switch-down times upon the cavity and atomic decay
rates (Mandel & Erneux 1982; Erneux & Mandel 1983; Moloney & Gibbs 1982; Hopf &
Meystre 1979; Bonifacio & Meystre 1978; Bischofberger & Shen 1979);

critical slowing down (Bonifacio & Meystre 1979; Garmire ef al. 1979);

overshoot switching (Goldstone et al. 1981); :

self-pulsing (Bonifacio & Lugiato 1978; Lugiato & Milani 1983).

Although some of these topics are reviewed at this meeting for specific materials, a reasonable
theory has still to be worked out.

BIFURCATIONS WITH TIME-DEPENDENT PARAMETERS

In most problems that we face in quantum optics, there occur bifurcation points at which
two states coalesce. The three most common critical points are:

(i) steady bifurcations, where a stationary state emerges from another steady state;

(ii) Hopf bifurcatons, where a time-periodic state emerges from a steady state;

(iii) limit points, where a solution ceases to exist.

For technical reasons, it is often necessary to investigate these bifurcation points experimentally
by sweeping a suitable parameter (the bifurcation parameter) across the transition domain.
It is usually argued that if the sweeping rate is small enough, the dynamical effects associated
with the time-dependence of the bifurcation parameter will be negligible and the system will
somehow ‘adiabatically follow’ the states described with a constant bifurcation parameter. We
shall see that this assumption may be quite wrong.

Let us first take a pedagogical example. Consider the equation

z, = zA4—2%, (1)

which corresponds to the cubic approximation of the standard laser equations when the atomic
variables have been adiabatically eliminated. Here z is the field intensity and 4 is the pump
parameter plus one. When 4 is constant, (1) has two steady states: z = 0 and z = 4. The trivial
solution z = 0 is stable for negative values of 4 whereas z = 4 is stable for positive 4. Hence
A = 0 is a steady bifurcation point.

When 4 is time-dependent, the situation is quite different. First we note that even if 4, # 0,
the trivial state z =0 remains an exact solution of (1). Second, if the initial condition verifies

[ 97 ]


http://rsta.royalsocietypublishing.org/

e \

A A

JA

A

A
‘/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

288 P. MANDEL AND T. ERNEUX

the inequality z(0) = z; € 1, we can analyse the stability of z = 0 by linearizing (1) around

the trivial solution
z, = Az. (2)

The solution of (2) is ¢
z(t) = z, expf A(s) ds. (3)
0

It is clear that (3) will diverge (i.e. z will become unstable) when

J " Al ds —o, (4)

0

which is the dynamical bifurcation equation. If we define ¢ as the time at at which the steady
bifurcation is reached, i.e. 4(¢) = 0, then we can decompose (4) into

f ads=—[" 4w (5)

0

which expresses the balance between the stability accumulated from 0 to ¢ (where A(s) is
negative) and the instability accumulated from ¢ and #* (where A(s) is positive). An obvious
inequality is £* > ¢, implying that A(¢*) is necessarily delayed compared with the steady value
A(f). For a linear dependence,

A(t) = A(0)+bt, A(0) <0, b>0, (6)
it is elementary to solve (4) and to find
A(t*) = — A4(0). (7)

In other terms, the distance between the dynamical and the steady bifurcations (4(#*) — A(f))
is equal to the distance between the steady bifurcation and the initial value (4(f) — 4(0)) and
independent of the sweeping rate, 4. This counterintuitive result is a long way from the
assumed adiabatic following of the steady states.

Of course, (7) was derived under the assumption that we may neglect the nonlinear term
in (1). We can remove this limitation by studying the exact solution of (1), which is

exp t A(s)ds
JO . (8)

0= z;! +J: {exp j: A(s) ds} d¢

For constant A this reduces to
z(t) = A{(4A/z;) et + 1371

The solution (8) gives qualitatively the same results as (7) as long as 0<b<1.

We now give two examples where delayed bifurcaton leads to new effects.
(1) Transient. 0.b. We first consider the semi-classical laser equations

E, = —E+ A,
v, =d(—v+EF),

for which a similar analysis has been performed (Mandel & Erneux 1984). In figure 1 we
indicate the result of a numerical integration of (9) with d = d;, = 10, A(t) = —0.5+107%¢. As
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Ficure 1. Dynamical hysteresis for a laser.

expected from our simple example, the zero intensity state is dynamically stabilized, but there
is no significant change of stability for the solution £ = 4 —1. Therefore making a forward
sweep followed by a backward sweep will induce two different responses and we create by this
mechanism a transient bistable response. Transient o.b. is not new and has been predicted in
optics in a different context by Broggi & Lugiato (1984).

(ii) Another example is taken from our study of 0.b. in a laser with saturable absorber (l.s.a.)
(Erneux & Mandel 1984) and is shown in figure 2. There we have solved the eight semiclassical
equations for an l.s.a. and let the pump parameter decrease, starting from the upper branch.
For constant 4, the linear stability analysis indicates that the upper branch has a Hopf
bifurcation at 4 = 4.2 (indicated by a circled bar on the curve), which is reached for ¢ = 260.
When 4 < Ay (i.e. t > 260) the steady upper branch is unstable. However, owing to the
time-dependence of 4, the dynamical bifurcation is delayed. In this precise example, the delay
is simply larger than the time necessary to reach the endpoint of the upper branch where the
jump to the trivial solution occurs.

4

intensity
o
T

0 - — c—— — ——

1 1 1
0 200 400 600
time
Ficure 2. Dynamical stabilization: for ¢ > 260 the upper branch is unstable with a constant pump parameter
and stable for a time-dependent pump parameter.
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We are now investigating the same type of effects on intrinsic 0.b., and preliminary results
indicate that delayed bifurcations do occur for the upper and the lower branches. Contrary
to most effects discussed in the first part of this paper, the time-dependence of the control
parameter results in the widening of the hysteresis domain.

This work has been done in the framework of an operation launched by the Commission
of the European Community under the experimental phase of the European Community
Stimulation Action (1983-85).

REFERENCES

Abraham, E. & Smith, S. D. 1982 Rep. Prog. Phys. 15, 815-885.

Bischofberger, T. & Shen, Y. R. 1979 Phys. Rev. A 19, 1169-1176.

Bonifacio, R. & Lugiato, L. A. 1976 Optics Commun. 19, 172-176.

Bonifacio, R. & Lugiato, L. A. 1976 Lett. nuovo Cim. 21, 510-516.

Bonifacio, R. & Meystre, P. 1978 Optics Commun. 27, 147-150.

Bonifacio, R. & Meystre, P. 1970 Optics Commun. 29, 131-134.

Bowden, C. M., Ciftan, M. & Robl, H. R. (eds) 1981 Optical bistability. New York: Plenum Press.

Bowden, C. M., Gibbs, H. M. & McCQall, S. L. (eds) 1984 Optical bistability II. New York: Plenum Press.

Broggi, G. & Lugiato, L. A. 1984 (In preparation.)

DelleDonne, M., Richter, P. M. & Ross, J. 1981 Z. Phys. B42, 271-283.

Dorsel, A., McCullen, J. D., Meystre, P., Vignes, E. & Walther, H. 1983 Phys. Rev. Lett. 51, 1550-1553.

Drummond, P. D. 1981 [EEE J. Quantum Electron. QE-17, 301-306.

Erneux, T. & Mandel, P. 1983 Phys. Rev. A 28, 896-909.

Erneux, T. & Mandel, P. 1984 Phys. Rev. A 30 (In the press.)

Firth, W. J. & Wright, E. M. 1982 Phys. Lett. 92, 211-216.

Fork, R. L. 1982 Phys. Rev. A 26, 2049-2064.

Garmire, E., Marburger, J. H., Allen, S. O. & Winful, H. G. 1979 Appl. Phys. Leit. 34, 374-376.

Gibbs, H. M., McCall, S. L. & Venkatesan, T. N. C. 1976 Phys. Rev. Lett. 36, 1135-1139.

Gibbs, H. M., McCall, S. L., Venkatesan, T. N. C., Gossard, A. C., Passner, A. & Wiegman, W. 1979 Appl. Phys.
Lett. 35, 451-453.

Goldstone, J. A, Ho, P. T. & Garmire, E. 1981 In Bowden (1981), pp. 187-197.

Harder, Ch., Lau, K. Y. & Yariv, A. 1982 IEEE J. Quantum Electron. QE-18, 1351-1361.

Hopf, F. A. & Meystre, P. 1970 Optics Commun. 29, 235-238.

Lasher, G. J. 1964 Solid-State Electron. 7, 707-7186.

Lugiato, L. A. 1984 In Progress in optics (ed. E. Wolf), vol. 21, pp. 71-216. Amsterdam: North-Holland.

Lugiato, L. A. & Milani, M. 1983 Z. Phys. B 50, 171-179.

Mandel, P. & Erneux, T. 1982 Optics Commun. 42, 362-365.

Mandel, P. & Erneux, T. 1984 (In preparation.)

Marburger, J. H. & Felber, F. S. 1978 Phys. Rev. A 17, 335-342.

Miller, D. A. B, Smith, S. D. & Johnston, A. 1979 Appl. Phys. Lett. 35, 658—-660.

Moloney, J. V. & Gibbs, H. M. 1982 Phys. Rev. Lett. 48, 1607-1610.

Moloney, J. V., Hopf, F. A. & Gibbs, H. M. 1982 Phys Rev. A 25, 3442-3445.

Rosanov, N. N. & Semenov, V. E. 1981 Optics Commun. 38, 435—438.

Schmidt, H. E., Koch, S. W. & Haug, H. 1983 Z. Phys. B 51, 85-91.

Smith, S. D. 1984 Nature 307, 315-316.

Szoke, A., Daneu, V., Goldhar, J. & Kurnit, N. A. 1969 Appl. Phys, Lett. 15, 376-379.

Weyer, K. G., Wiedenmann, H., Rateike, M., McGillavray, W. R., Meystre, P. & Walther, H. 1981 Optical
Commun. 37, 426-430.

Willis, C. R. 1983 Phys. Rev. A 27, 375-380.

[ 100 ]


http://rsta.royalsocietypublishing.org/

